データサイエンスとは? データサイエンティストの役割、企業に依頼するコツや活用事例を紹介

データサイエンスとは?データサイエンティストの役割、企業に依頼するコツや活用事例を紹介

データサイエンスとは、大量のデータから有益な知見を導き出すことです。データドリブンと呼ばれる、データの分析結果をもとに経営や現場の意思を決定していくことは、経験や勘をベースとした意思決定よりも精度が高いものとなるため、ビジネスはもちろん、医療や交通など幅広い分野で活用されています。データサイエンスを扱う専門家としてデータサイエンティストの需要が高まっています。

➡︎【資料ダウンロード】DX人材育成の教科書

データサイエンスとは?

近年、ビッグデータを効率的に扱えるようになり、ビッグデータから知見を導き出すデータサイエンスが、ビジネスで注目を浴びています。データサイエンスとは何か?具体的に見ていきましょう。

データサイエンスの定義

データサイエンスとは、大量のデータを収集・解析することにより有益な知見を導き出すことです。特にビジネスでは、データを用いることで課題に答えを出し、価値を創出していくことが求められています。

インターネットの普及や、コンピュータのデータ処理速度が上がったことにより、ビッグデータと呼ばれる膨大なデータを効率的に扱えるようになりました。企業には日々、様々なビッグデータが蓄積されています。たとえば、店舗の売り上げや、車の走行記録、気象データなどがあります。これらのデータから、なんとかして物事の法則や異常など、課題を解決する知見や洞察を見いだせないか?このようにして生まれたのがデータサイエンスです。

ビッグデータから有用な知見や洞察を見いだすには、データの処理技術、統計などデータ分析の知識、分析結果を可視化する技術など様々な知識が必要です。データサイエンスはビジネスはもちろん、医療や交通など幅広い分野で活用されており、データサイエンスを扱う専門家としてデータサイエンティストの需要が高まっています。

データ活用がビジネスにおいて注目される理由

近年、企業は最新のIT技術を導入してビッグデータの収集を行いやすい環境となりました。このデータを適切に分析し、分析結果をもとに決められた経営や現場の意思決定は、従来の経験や勘に頼りきった方法よりも精度が高いものとなります。このようなデータにもとづいた経営判断を行うことをデータドリブン経営といいます。

ところが日本企業では、データは単にデータベースなどに保管されているだけで、適切に扱われていないことが多いというのが現状です。情報処理推進機構IPAの「DX白書2021 日米比較調査に見るDXの戦略、人材、技術」によると、日本企業は「適切な情報を必要なタイミングで取り出せる」ことや「部門間で標準化したデータ分析基盤の実現」といったビジネスニーズへの対応が十分できていません。原因としては、日本企業では「全社的なデータ利活用の方針や文化がない」「データ管理システムが整備されていない」「人材の確保が難しい」といった課題があるためです。

★データサイエンスとは、大量のデータから有益な知見を導き出すこと
・ビッグデータから有用な知見や洞察を見いだすには、様々な知識が必要
・データサイエンスを扱う専門家、データサイエンティストの需要が高まっている
・データにもとづいた経営判断は、経験や勘に頼るよりも精度が高いものとなる

➡︎【資料ダウンロード】DX人材育成の教科書

データサイエンスによって解決できる課題

データサイエンスを使い、企業は既存の製品やサービスを改善し、競争上の優位性に変えようとしています。データサイエンスによって解決できる業務効率化や戦略策定の例を見てみましょう。

業務の効率化・コスト削減

業務プロセスや状況をデータ化し、可視化することで、改善や効率化・コスト削減への課題発見につなげることができます。たとえば製造業などでは、生産ラインごとの設備稼働状況のデータを調査することにより、停滞発生箇所の改善などを行うことができるでしょう。他にも、故障の多い設備を早期に発見することで、生産ラインの停止を事前に防ぐような手立ての実現へつながります。

売り上げ向上のための戦略策定

小売業やサービス業では、社内の顧客の購買データや社外の人口統計情報を収集・分析することで、顧客の好みや売れ筋予測などを行うことや、新たなマーケティング戦略の立案ができます。たとえば小売業では、顧客の性別や年齢分布データから顧客の関心を分析、おすすめ(レコメンデーション)をすることでさらなる購入につなげることができるでしょう。サービス業では、コールセンターで収集した解約ユーザの意見を調査・分析し、新たなマーケティング戦略の立案も可能となります。

➡︎【資料ダウンロード】DX人材育成の教科書

データサイエンティストとは

データサイエンティストとは、AIや統計などの様々な手法を用い、大量のデータの中から有益な情報を導き出すことができる人材のことです。データアナリストという言葉もありますが、データサイエンティストとはどう違うのでしょうか?また、データサイエンティストの仕事内容や必要なスキルはどういったものか見ていきましょう。

データアナリストとの違い

データサイエンティストは、データサイエンスを扱う専門家。取得したデータから価値を創出するために、学習や推論モデルの開発やさまざまなツールを駆使してインサイトを発見することが主な役割です。大事なのは、価値を創出し、ビジネス上の課題に答えを出していくという点。

一方でデータアナリストとは、取得したデータを用いたダッシュボードの作成やアンケートの設計や分析、定性調査など、サービス改善につながるインサイトの提供を行うのが役割です。

データサイエンティストは、データサイエンスの流れを全て把握した上で、得られた情報をよりビジネスや実装・運用に活かすよう、課題解決までを担当していきます。一般的にはデータアナリストよりも上流工程を担当します。

仕事内容

データサイエンティストの仕事は、現状の課題を解決するための方法を検討することから、計画を立て、データ収集、情報活用にまで至ります。また、業務は単独で作業するわけではなく、データアナリストやエンジニアなど、様々なメンバーとチームを組んで進められます。

データサイエンティストの行う仕事内容を、流れとともに具体的に見ていきましょう。

①課題の把握と仮説の立案
問題を抱える部署や、クライアントにヒアリングを行い要望や課題を把握します。また、 課題を解決する仮説を立案し、クライアントやデータアナリストに説明の上、データ収集につなげていきます。

②データ収集
目的に対するデータ収集方法を検討、実際に収集してデータストアに格納、そして格納されたデータの加工や洗い出しまでを行います。
収集したデータは、すぐ分析に使える状態になっているものは少ないため、データの型をそろえることや、フォーマット変換、余計なデータを削ぎ落とすというデータクレンジング等の処理を施す必要があります。

③データの分析・可視化
収集されたデータは膨大であることや、データの形式が画像や音声、動画などの場合もあるのが実情です。そのようなデータに対し、属性や傾向、特徴などを把握の上、規則性や関連性を見いだしていきます。得られた結果を視覚的に表示しながら解析をすすめることで、さらなる発見につながり、また次の段階である情報活用にも利用することができます。

④分析をもとに得られた情報の活用
得られた知識や情報をどう組み合わせるか、関係メンバーの業務知見と照らし合わせながら、どのような形で分析結果の最終形とするかを検討します。得られた結果は、アプリケーションや製品に導入するなど、様々な方法を通して活用されていくのです。

必要なスキル

データサイエンティストには、企業の課題を把握するためのビジネス構造や業務内容への理解が必要です。また、課題を解決するための仮説を立てる力、仮説を実証するためのデータやプログラミングに対する知識、得られた結果を実現するためのスキルなど、仕事内容に応じて多様なスキルが求められます。仕事内容に応じた、特に必要とされるスキルを見ていきましょう。

①「課題の把握と仮説の立案」で特に必要となるスキル

  • ・コミュニケーションスキル
  • ・ロジカルシンキング
  • ・仮説思考

問題を抱える部署やクライアントにヒアリングを行い、要望や課題を適切に把握するには、コミュニケーションスキルはもちろんのこと、物事を結論と根拠に分け、その論理的なつながりを捉えながら適切に説明するためのロジカルシンキングが必要となります。

仮説思考とは、論点に対してその時点で考えられる仮説をおきながら進める思考方法のことです。仮説思考で考えられると、分析・調査のムダが少なくなり、より有益なロジカルシンキングへとつながっていきます。

②「データ収集」で特に必要となるスキル

  • ・スクレイピング
  • ・プログラミング(Python,Java,C言語)
  • ・SQL、その他データベース基礎知識

スクレイピングとは、Webやデータベースから広くデータを抽出する手法です。そのスクレイピングを行うためにはプログラムが必要ですが、中でもPythonはスクレイピングに適したライブラリが多数揃っており、データ収集に適した言語といえます。

何もないところから大量のデータを作成・収集するためのプログラムを作り出す場合、高速な処理が必要となる場合があります。この場合Pythonでは処理が遅いため、JavaやC言語などのプログラミングスキルが必要です。

また、収集したデータはリレーショナルデータベースとして格納されることが多く、その言語であるSQLの知識は必須となります。

③「データの分析・可視化」で特に必要となるスキル

  • ・統計解析
  • ・プログラミング(R言語,Python)
  • ・データ可視化、BIツール
  • ・機械学習、推論モデルの開発

収集されたデータに対し、原因と結果の関係を明らかにすることや、データの性質の調査、何をもって有効であると判断するか、に使うのが統計分析です。

R言語は統計計算およびグラフィックの分野に特化したプログラミング言語であり、簡単なコードで統計計算を実施できるパッケージの種類も豊富です。データ解析を行う場合、統計解析とR言語は必須のスキルです。

R言語に加え、Pythonも科学計算分野のライブラリが強化されており、ディープラーニングを用いた異常検知、画像認識によく使われる言語となっています。

データの可視化はデータビジュアライゼーションとも呼ばれますが、膨大なデータから必要な情報を引き出し、分析してレポーティングすることです。この可視化を行うためのツールがBIツールと呼ばれます。BIツールには様々なものがあり、ツールごとに機能や特徴が異なるため、業務に適したBIツールを見極め、利活用できるスキルが求められます。

④「分析をもとに得られた情報の活用」で特に必要となるスキル

  • ・コミュニケーションスキル
  • ・プレゼンテーションスキル

得られた知識を現場のスタッフと連携していくことになるため、コミュニケーションスキルはもちろんのこと、結果を成果物としてまとめ、関係部署やクライアントへ説明するプレゼンテーションスキルが必要となります。ここで適切にプレゼンテーションすることで、得られた知識が企業にとって有益であることを伝えることができ、企業の競争力向上へつながっていきます。

➡︎【資料ダウンロード】DX人材育成の教科書

モンスターラボのテータ活用事例

実際にデータを活用しサービス改善やプロダクト開発を行なった事例を見ていきましょう。

キャッシュビー

画像処理技術の改善によるレシート内データの効率的な取り込みと識別を実現

画像処理技術の改善によるレシート内データの効率的な取り込みと識別を実現

『CASHb』アプリは、キャッシュビーが提供するレシート内の購買データを収集する日本初のキャッシュバックサービス。食品・日用品などの消費財メーカーに新たなダイレクトマーケティングの機会を創出。キャッシュビーのパートナー会社であるキャッシュビーデータは、ユーザーが送付したレシート画像から生活者購買データを取得・活用し、B2C企業にデータを活用する機会を提供しています。

モンスターラボは、レシート画像データを効率的に取り込み、有効データとして活用するための画像処理技術の改善を担当しました。

画像処理技術の改善により、精度よく抽出・分析を行うことが可能に。これまで人の手に頼っていた確認作業を大幅に削減でき業務効率化に繋がりました。

現在、モンスターラボは自然言語処理のAIエンジン開発に着手し、収集したデータをより有益なものにする取り組みをサポートしています。

★事例について詳しくはこちら

ユニメイト

AIの画像認識を活用した自動採寸アプリ

AIの画像認識を活用した自動採寸アプリ

レンタルユニフォーム事業を主軸に各種ユニフォームの企画・生産・販売やクリーニングまでを手がけるユニメイト社が提供する、AI画像認識を活用した自動採寸PWA『AI×R Tailor(エアテイラー)』。モンスター・ラボは企画段階から参画し、プロダクト開発の全工程を担当しました。

課題になっていたのは、サイズ計測時のヒューマンエラーによる返品・交換が多発していたこと(最大実績で返品率40%超と多大なコストが発生)。これに対し、モンスターラボは技術調査により「画像から3Dモデルを作成し、そこから実際のサイズを予測する」手法を導き出し、オリジナルのAIエンジン開発に成功。ユニメイト社から提供された採寸データを用いて検証を繰り返し、AI画像認識の精度を高めました。

今後も実証実験を継続的に実施。サイズの判断や適合ロジックの改善、AIの精度向上という観点から、サービスの価値向上を目指した支援を続けています。

★事例について詳しくはこちら

➡︎【資料ダウンロード】DX人材育成の教科書

まとめ:データを知識に変え、労働生産力を強化しよう

データサイエンスとは何か、データサイエンスで解決できる課題や、データサイエンティストの仕事内容について解説しました。データサイエンスは、価値を創出しビジネス上の課題に答えを出していく流れであり、データサイエンティストはその専門家です。

現状の課題を解決するための方法を検討し、データの分析結果をもとに、経営や現場の意思決定を行うデータドリブン経営を行うことが、労働生産力の低下を防ぎ、売上や利益を伸ばしていくことにつながります。

企業の文化的背景や人材不足などの課題が大きく、すぐに実行するというわけにはいかないことも多いとは思いますが、既存の情報を正しく知識に変え、知識を運用していける組織を目指していきましょう。

➡︎【資料ダウンロード】DX人材育成の教科書

デジタルトランスフォーメーションを検討している企業ご担当者様へ

モンスターラボではお客様からのアプリやWebサービスの開発に関するお問い合わせ・お見積もりのご依頼を随時受付しております。

モンスターラボが提供するサポートの詳しい概要は、下記のボタンから資料をダウンロードしてください。
DX支援サービス紹介資料ダウンロード

直近のイベント

記事の作成者・監修者

平田 大祐(株式会社モンスターラボ 執行役員 CTO APAC)

2004年IBMグループに入社し、IBM ITスペシャリストとしてシステム開発に従事。 2009年からベンチャー企業にて受託開発、コンテナ型無人データセンターの管理システム、ドローン開発などソフトウェアからハードウェア開発まで幅広く関わる。チーフテクノロジストとして2015年にモンスターラボへ入社し、2018年4月より最高技術責任者であるCTOに就任。 プロフィールはこちら