AI(人工知能)とは何か?言葉の意味やビジネス活用へのヒントをわかりやすく簡単に解説

AI(人工知能)とは何か?言葉の意味やビジネス活用へのヒントをわかりやすく簡単に解説

AIとは『人間のような知能を持ったコンピューター』のようなもので、“自ら学習する”ことが大きな特徴です。

現在、AIは非常に身近な存在になりましたが、その本質的な意味や仕組みを知らずに「なんとなく理解している」という方もまだまだ多いのではないでしょうか?

本記事では、「AI」の言葉の意味や定義からこれまでの研究の歩み、機械学習・ディープラーニングといった学習方法、未来にもたらす効果までを徹底解説。また実際のビジネスでの活用についても紹介。AIに関する基礎知識をまとめてレクチャーします。

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AI(人工知能)とは何か?

まずは、「AI」とはなんなのか。言葉の意味や定義からおさらいしていきましょう。

AI(人工知能)という言葉の誕生

AIという言葉が初めて用いられたのは1956年。アメリカのダートマス大学で開催されたダートマス会議で、計算機科学者・認知科学者のジョン・マッカーシー教授によって提案されました。

“AI”とは何の略?

AIとは、Artificial Intelligence(アーティフィシャル・インテリジェンス)の略称。Artificialは「人工的な」、Intelligenceは「知能/知性」という意味を持っています。

AI(人工知能)の対義語

AIの対義語は、Natuar Intelligence(ネイチャー・インテリジェンス)。略称はNIです。Natuar Intelligenceの和訳は「自然知能」という言葉で、人間や動物などの自然が生み出した知能のことを言います。

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AI(人工知能)の定義

一般社団法人 人工知能学会では、AIという言葉の生みの親であるジョン・マッカーシー教授の言葉を『知的な機械、特に知的なコンピュータプログラムを作る科学と技術』と翻訳して紹介しています。

しかし、AIに関する研究が進んだ現在、研究者ごとに異なる言葉で定義されているのが現状。日本国内の主な研究者によるAIの定義は下記の通りです。

▪️日本国内の主な研究者による人工知能(AI)の定義

研究者 所属 定義
中島 秀之 公立はこだて未来大学
学長
人工的につくられた、知能を持つ実体。あるいはそれをつくろうとすることによって知能自体を研究する分野である
西田 豊明 京都大学大学院
情報学研究科教授
「知能を持つメカ」ないしは「心を持つメカ」である
溝口 理一郎 北陸先端科学技術
大学院大学教授
人工的につくった知的な振る舞いをするもの(システム)である
長尾 真 京都大学名誉教授
前国立国会図書館長
人間の頭脳活動を極限までシミュレートするシステムである
堀 浩一 東京大学大学院
工学系研究科教授
人工的につくる新しい知能の世界である
浅田 稔 大阪大学大学院
工学研究科教授
知能の定義が明確でないので、人工知能を明確に定義できない
松原 仁 公立はこだて未来大学
教授
究極には人間と区別がつかない人工的な知能のこと
武田 英明 国立情報学研究所
教授
人工的につくられた、知能を持つ実体。あるいはそれをつくろうとすることによって知能自体を研究する分野である(中島氏と同じ)
池上 高志 東京大学大学院
総合文化研究科教授
自然にわれわれがペットや人に接触するような、情動と冗談に満ちた相互作用を、物理法則に関係なく、あるいは逆らって、人工的につくり出せるシステムを、人工知能と定義する。
分析的にわかりたいのではなく、会話したり付き合うことで談話的にわかりたいと思うようなシステム。それが人工知能だ
山口 高平 慶應義塾大学理工学部
教授
人の知的な振る舞いを模倣・支援・超越するための構成的システム
栗原 聡 電気通信大学大学院
情報システム学研究科教授
工学的につくられる知能であるが、その知能のレベルは人を超えているものを想像している
山川 宏 ドワンゴ人工知能研究所所長 計算機知能のうちで、人間が直接・間接に設計する場合を人工知能と呼んでよいのではないかと思う
松尾 豊 東京大学大学院
工業系研究科准教授
人工的につくられた人間のような知能、ないしはそれをつくる技術

「AIとは何か」を平たく『NI(自然知能)をコンピューター上に再現したもの』『人間のような知能を持ったコンピューター』と考えても概ね間違いではないのですが、AIは明確に定義されていないというのが現状です。

◎AIとは・・・

・1956年、ダートマス会議で計算機科学者のジョン・マッカーシー教授が提案

・『知的な機械、特に知的なコンピュータプログラムを作る科学と技術』/人工知能学会

・『人間のような知能を持ったコンピューター』のようなものだが明確な定義はない

AI(人工知能)研究の歴史

現在、Appleの「Siri」に代表される音声アシスタント、アイロボットのお掃除ロボット「ルンバ」、ソフトバンクの感情認識ヒューマノイドロボット「Pepper」など、AIが身近な存在として人間社会に受け入れられつつあります。

近年のAI技術の進歩には目を見張るものがありますが、AIの研究が盛んになったのは1950年代後半頃から。ブームと冬の時代(停滞期)を繰り返して、徐々にAIは進化してきました。ここではそんなAI研究の歴史を簡単に紹介していきます。

第一次 AIブーム(1950年代後半~1960年代)

「AI」という言葉を生んだダートマス会議が開催された1950年代後半から1960年代にかけて、第一次 AIブームが巻き起こりました。

ブームの背景にあったのは、コンピューターによる「推論」と「探索」が可能になり、特定の問題に対して解答を導き出せるようになったこと。しかし、当時のAIが対応できたのは、明確なルールや定義付けがある問題に限定されていました。

現実社会で起こっているさまざまな要因が複雑に絡み合う課題の解決には対応できないことが判明したことで、AIブームは徐々に下火に。1970年代には、冬の時代(停滞期)を迎えてしまいました。

第二次 AIブーム(1980年代〜1990年代)

第二次 AIブームが到来したのは、1980年代〜90年代。「エキスパートシステム」の誕生により「知識表現」が可能になったことが大きな要因です。

エキスパートシステムは、「○だったら×をしなさい。それ以外の場合は△しなさい」というようなルール群で知識を構成している人工知能。自分で学習する仕組みはありませんが、あらかじめ専門家が考え得る限りの状況を予測して対処方法や判断を用意することで機能します。

ルールが多ければ多いほど正確性は向上しますが、必要となる情報をすべて人の手でコンピューターに理解させなければならず、実際に活用できるのは特定の領域の情報などに限定されたものばかり。このように活用できる知識量に限界が見えたことから、1995年頃からAIは再び冬の時代を迎えました。

第三次 AIブーム(2000年代〜現在)

第三次 AIブームは2000年代から始まり、本記事を最初に執筆した2019年から現在にかけてもその渦中にあります。

ブームの要因を作ったのは、AI自身が大量のデータ(ビッグデータ)から知識を獲得する「機械学習」の実用化が進んだこと。さらに、2006年には知識を定義する要素(特徴量)をAIが自ら習得するディープラーニング(深層学習)が提唱され、ブームに拍車をかけました。

さらに2022年以降、機械学習やディープラーニングの技術を用いて新しい画像を生成する「画像生成AI」や、人との自然なコミュニケーションや文章の自動生成、要約、情報収集などができる「ChatGPT」の登場により、専門的な知識を持っていなくても活用できるAIが世界中で急速に普及し始めています。

★ChatGPTについて詳しくはこちら

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AIには3段階ある

AIには大きく3段階あるといわれています。「特化型人工知能(ANI)」⇒「汎用人工知能(AGI)」⇒「人工超知能(ASI)」の3段階です。しかし、Chat-GPTの登場により世の中の期待感は高まっておりますが、「汎用人工知能(AGI)」「人工超知能(ASI)」については未だ実現していません。

特化型人工知能(ANI)

特化型人工知能(ANI)とは、数的処理や論理的処理、言語処理などをはじめとする特定の分野でのみ能力を発揮できる人工知能です。特定の分野に対して、膨大なデータに基づいた確度の高い返答ができることが特徴とされます。Artificial Narrow Intelligenceの頭文字から、ANIと呼ばれます。

汎用人工知能(AGI)

汎用人工知能(AGI)とは、想定外の状況でも自ら学習し、能力を応用して処理することができる、人間に近い知能を持つ人工知能を指します。Artificial General Intelligenceの頭文字から、AGIと呼ばれます。

★汎用人工知能(AGI)について詳しくはこちら

人工超知能(ASI)

人工超知能(ASI)とは、文字どおり、人間の知能と行動を学習・理解するだけではなく、それらを凌駕した人工知能を指します。Artificial super intelligenceの頭文字から、ASIと呼ばれます。

人工超知能は人間にはできないアイデアを生み出せるとされ、意思決定と問題解決を行う能力が、人間よりはるかに優れているといわれています。

こういった人工超知能は、環境問題や社会問題といった切迫する問題の解決策を提示するといったことが期待される一方、人間の知能を凌駕するため、法整備や世界レベルでのレギュレーションの議論などが必要とされています。

AI(人工知能)の代表的なアルゴリズム

AIの研究において重要な役割を担う、AI御三家とも呼ばれる「ニューラルネットワーク」「遺伝的アルゴリズム」「エキスパートシステム」といった代表的なアルゴリズムを解説していきます。

ニューラルネットワーク

ニューラルネットワークはニューロン(脳の神経細胞)をモデルとしたAI

ニューラルネットワークはニューロン(脳の神経細胞)をモデルとしたAI

ニューラルネットワークは、ニューロン(生物の脳を構成する神経細胞)の構造と働きをモデルにしたAI。ニューロンは他のニューロンから一定値以上の電気信号を受け取ると興奮し、その先につながったニューロンに電気信号を送ります。このようなニューロン同士の連携行動の仕組みを数値モデル化したものです。

ニューラルネットワークは、データを入れる入力層、入力層から流れてくる重みを処理する中間層(隠れ層)、結果を出力する出力層で構成されています。人間が先生になって例題と模範解答のセット(教師信号)をニューラルネットワークに教えると、その後は教えていない範囲に対してもニューラルネットワーク自体が判断したり推理したりするようになります。

遺伝的アルゴリズム

遺伝的アルゴリズムは、ダーウィンの進化論をモチーフにしたAIです。

ダーウィンの進化論を要約すると以下のようになります。

生き物は、環境に応じて、優秀な個体だけが子孫を残すことができ、劣等な個体は淘汰される。また、個体は突然変異を起こす場合があって、まれに優秀な個体になることもある。これを繰り返して進化してきた。

(出典)三宅陽一郎・森川幸人「絵でわかる人工知能」(SB Creative)p.62

この「優秀な個体」=「良い解答」として、進化の手法を用いて最適解を導き出そうとするのが遺伝的アルゴリズムです。

遺伝的アルゴリズムが最も得意とするのは、膨大な組み合わせが存在するなかからベストな答えを見つけ出すこと。人力で計算することが難しいレベルの組み合わせ爆発を起こす問題に対して、素早く最適解を割り出すことができます。

エキスパートシステム

エキスパートシステムは人間の“考え方”をモデルにしたAI(人工知能)

エキスパートシステムは人間の“考え方”をモデルにしたAI(人工知能)

エキスパートシステムは、人間の“考え方”をモデルにしたAI。他のAIモデルと異なるのは、自分自身で学習する仕組みがないことです。

まずは、特定の専門家(エキスパート)から考え得る状況とそれに対する対処方法・判断・予測をヒアリングし、それに基づいてルールを定義します。そこで定めたルールを基にユーザーからの問い合わせがどの状況に当てはまるかを判断し、定義されている判断や予想を行います。

下記に挙げる例のように、特に医療分野の病気の診断で活躍しています。

★例:エキスパートシステムによる診断

質問:主な症状は次のうちどれですか?

解答:①熱がある ②鼻水が出る ③咳が出る

ルール1:もし熱があるなら食中毒と判断する

ルール2:もし鼻水が出るなら風邪と判断する

ルール3:もし咳が出るなら結核と判断する

(出典)三宅陽一郎・森川幸人「絵でわかる人工知能」(SB Creative)p.73

上記のように、ユーザーからの回答に合わせて事前に用意していた診断を下します。

ルールの数が多ければ多いほど正確になりますが、ルールが増えすぎるとそれぞれのルールの整合性が取りにくくなることがあります。さらに、重要なルールに抜け・漏れがあると正しい判断をすることができなくなってしまいます。

また、ルールの設定には専門家の手助けが必要になることやルールを正しく設定できたとしても専門家以上の回答を導き出すことができないのもエキスパートシステムの懸念事項です。

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AI(人工知能)の学習方法① 機械学習

機械学習とは、AIにおける“学習”のこと。人間が学習するように「機械自身が学習する」という意味が込められています。

つまり、プログラマーによってプログラミングされた範囲以上のことが実行できるようになることが基準になります。

機械学習は大きく分けて、「教師あり学習」「教師なし学習」「強化学習」の3つに分類されます。

★機械学習について詳しくはこちら

AI(人工知能)の学習方法② ディープラーニング(深層学習)

ディープラーニングは、多層化したニューラルネットワークを用いた機械学習の手法。十分な学習データさえあれば、ニューラルネットワーク自体がデータ群の特徴を自動抽出することが可能です。

★ディープラーニングについて詳しくはこちら

AIの未来:シンギュラリティ・AIの進化によってなくなる仕事は?

シンギュラリティ(技術的特異点)とは1980年代からAI研究家の間で使用されるようになった言葉で、人間と人工知能の臨界点を指す言葉。つまり、人間の脳と同レベルのAIが誕生する時点を現しています。

★シンギュラリティについて詳しくはこちら

近年、AIを活用したテクノロジーが身近なものになり、便利な世の中になることを歓迎する一方で、「AIが発達することで人間の仕事が奪われるのではないか」と危惧する声を耳にする機会が増えました

しかし、現状としては人間が持つNI(自然知能)とコンピューター上で表現するAIの間にはまだまだ埋められないほどの溝があることも事実。

実際に、現在開発されているAIのほとんどは問題特化型で、1つのモデル化・数学化した問題の解決にのみ機能しているというのが現状です。

★AIの進化で「なくなる仕事」について詳しくはこちら

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AIのビジネスにおける活用

これまでに紹介してきた学習手法を用いて、現在さまざまな分野でAIが活躍しています。

カテゴリー別にAIを活用した機能をまとめてみましたので、どんな用途で活用されているのかチェックしてみましょう。

▪️カテゴリー別 AIを活用した機能の一例

カテゴリー 活用領域の一例
コンピュータービジョン 画像分類/画像生成/オブジェクト検出
自然言語処理 機械翻訳/言語モデリング/質問への回答
医療 医療用画像セグメンテーション
方法論 分散表現(単語の埋め込み)/表現学習
ゲーム ビデオゲーム/ボードゲーム
グラフ リンク予測/ノード分類
スピーチ 音声認識/音声合成
時系列 時系列分類/代入
オーディオ 音楽生成/オーディオ分類
ロボット キャリブレーション/自己位置認識
音楽 音楽情報検索/音楽モデリング
コンピューターコード 次元削減/プログラム合成
推論 意思決定/常識的推論
知識ベース ナレッジグラフ/因果発見
敵対性 攻撃/防御/敵対テキスト
その他 レコメンデーション/トピックモデル

(出典)Browse the State-of-the-Art in Machine Learning

これらのビジネスにおける活用には、AI自体をサービスとして提供するものとAIを実際の業務に活用するものがあります。

AIそのものをサービスとして提供する

AIそのものをサービスとして提供するものとしては、たとえばテキスト入力で画像を生成してくれるサービスやテキストによる質問への回答や会話などができるChat-GPTも含まれます。また後述します事例にもピックアップしておりますが、AIの画像認識による自動採寸を行い、最適な商品を提案するといったサービスなどもあります。このようにシステム会社は、昨今さまざまなAIシステムを開発・販売しています。

AIを業務に活用する

ビジネスにおけるAIの活用としては、こちらのほうが活用シーンが多いかもしれません。

たとえばバックオフィス業務の効率化で、AIを導入すると会計処理やスケジュール調整など日々発生する作業をミスなく効率よく処理できます。また、カスタマーサービスとしてAIチャットボットを導入すれば、24時間稼働できる上、その分の人的リソースは他へ回すことができるため省人化と顧客の利便性の両方を叶えることができます。

その他、ビッグデータの収集と分析もAIの得意分野です。データ収集と分析により、顧客へのレコメンド機能の実装や顧客の潜在ニーズを発見しマーケティング活動に活かすといったことも可能です。

➡︎【5分でわかる】ChatGPTの導入ポイントと活用事例 <資料ダウンロード>

AIのビジネス活用成功事例

AIのビジネス活用事例として実際に成功している事例について、いくつか紹介いたします。

AIの画像認識を活用した自動採寸アプリ(株式会社ユニメイト)

従来のレンタルユニフォーム事業では、ヒューマンエラーによるサイズ違いが頻発。労力も含めて返品・交換に多大なコストが発生することが大きな課題になっていました。

課題解決のために、同社はAI画像認識を活用した自動採寸PWA「AI×R Tailor(エアテイラー)」を開発。モンスターラボは企画段階から参画し、プロダクト開発の全工程を担当しました。

採寸にかかるクライアントの作業コストだけでなく、返品にかかる自社コストの削減にも成功しました。

★事例について詳しくはこちら

★お客様インタビュー(AI画像認識を活用したDX推進事例)はこちら

キャッシュビーデータ|キャッシュバック提供アプリ『CASHb』の画像処理技術改善

画像処理技術の改善によるレシート内データの効率的な取り込みと識別を実現

画像処理技術の改善によるレシート内データの効率的な取り込みと識別を実現

『CASHb』アプリは、キャッシュビーが提供するレシート内の購買データを収集する日本初のキャッシュバックサービス。食品・日用品などの消費財メーカーに新たなダイレクトマーケティングの機会を創出。

キャッシュビーのパートナー会社であるキャッシュビーデータは、ユーザーが送付したレシート画像から生活者購買データを取得・活用し、B2C企業にデータを活用する機会を提供しています。

モンスターラボは、レシート画像データを効率的に取り込み、有効データとして活用するための画像処理技術の改善を担当しました。

★事例について詳しくはこちら

毎日放送(MBS)|AIを活用した解析・調整による動画編集作業の効率化

画像認識AI、音声信号処理を活用した解析・調整により、編集作業時間の40%削減に貢献

画像認識AI、音声信号処理を活用した解析・調整により、編集作業時間の40%削減に貢献

毎日放送(MBS)は、近畿広域圏を対象地域とするテレビ放送局。

モンスターラボは、同社が開催する「第39回サントリー1万人の第九」において、1万4215件分の一般投稿動画に画像認識AI、音声信号処理による解析・調整を実施。動画編集初期の作業を効率化することで、MBSの編集作業時間を前年比で40%削減しました。

★事例について詳しくはこちら

まとめ:AI(人工知能)がDXの鍵を握る

言葉の意味や定義、発展の経緯、学習方法など、AIに関する基礎知識を紹介してきましたがいかがでしたか?

AIの進化については“人間の能力を超えるかもしれない”という部分に、不安や恐怖を感じている人もいるかもしれませんが、急速にテクノロジーが進歩し続ける今、もはや避けて通れる道ではなくなっているといっても過言ではないでしょう。

時代の変化とともに、人間社会は絶えず変わりゆくもの。今後もAIがもたらす機能により、さまざまな業種・分野でDXの波が押し寄せることは間違いありません。

大切なのは、AIが人間の生活をどのように豊かにしてくれるのか前向きに考えること。AIについて正しく理解し、新しい社会の在り方について思考を巡らせる方が建設的です。

企業においては既存ビジネスの変革、新規ビジネスの創出といった観点からAI機能をいち早く取り入れて、DXを推進していくことが中長期的な成長戦略の鍵を握ることになるでしょう。

AI(人工知能)の導入をご検討中の経営者様・企業担当者様へ

モンスターラボは、約20年にわたるサービス・プロダクト開発実績から得られたデジタル領域の知見や技術力を活かし、デジタルプロダクト開発事業を展開しています。

老朽化しメンテナンスが困難なシステムや、仕様書がなくブラックボックス化したシステムを抱えてお困りではありませんか。弊社生成AIソリューションの“CodeRebuild AI”を活用し、古いコードの書き換え支援やシステム刷新実現性のPoC検証が可能です。検証後はリホスト&リライト、リビルドといったソリューションを段階的に実施し、ビジネス最適化された単位でのモダナイゼーションを支援します。

モンスターラボが提供するサポートの詳しい概要は以下リンクをご確認ください。

➡︎モンスターラボのサービス概要はこちら

案件の相談はこちら

直近のイベント

記事の作成者・監修者

平田 大祐(株式会社モンスターラボ 常務執行役員)

平田 大祐(株式会社モンスターラボ 常務執行役員)

2004年IBMグループに入社し、IBM ITスペシャリストとしてシステム開発に従事。 2009年からベンチャー企業にて受託開発、コンテナ型無人データセンターの管理システム、ドローン開発などソフトウェアからハードウェア開発まで幅広く関わる。チーフテクノロジストとして2015年にモンスターラボへ入社し、2018年4月より最高技術責任者であるCTOに就任。 プロフィールはこちら